
$

Competitive Security Assessment

Mitosis

Apr 12th, 2024

Secure3 secure3.io

Mitosis

2

Summary 3

Overview 4

Audit Scope 5

Code Assessment Findings 7

MTS-1 encodeRefund() and encodeBridge() function in Message contract have wrong logic leads to wrong

behavior

10

MTS-2 ArbitrumBridgeAdapter::outboundTransfer() and PolygonZkEvmBridgeAdapter::bridgeAsset() are p
ayable function but has no mechanism to forward msg.value resulting in Denial of Service(DoS)

12

MTS-3 OpenZeppelin's SafeERC20.safePermit() is not follow EIP-712 16

MTS-4 Missing control in bridgeAsset function 18

MTS-5 EETHDepositHelper contract deposit wrong amount, causing can't deposit forever 20

MTS-6 Cap.sol contract can't send crosschain using Hyperlane because it doesn't hold any native token as
crosschain fee

22

MTS-7 CCDM Host's token approval to wrong receiver 23

MTS-8 Bridging token using native bridge send to wrong receiver 24

MTS-9 User who hold vault token by trading can't redeem token to earn back themself, make the vault token
useless

26

MTS-10 Unsupported Opcode in Multi-Chain Deployment 28

MTS-11 Underpayaing the L2 gas may lead to loss of funds 30

MTS-12 The epoch assertion in _checkRemoteStateAndAdvance() function is not behave as expected 31

MTS-13 Not pulling token to Adapter contracts lead to to can't bridge token crosschain using native bridge 33

MTS-14 zkEVM bridge need an extra step in L2 to successfully bridged 35

MTS-15 Use Ownable2StepUpgradeable instead of OwnableUpgradeable contract 37

MTS-16 The bridgeGateway addresses are hardcoded 39

MTS-17 No whitelist token in CCDM Host lead to user can accidentally losing token 40

MTS-18 Missing 0 amount check 45

MTS-19 Ensure no native asset value is sent in payable method that can handle ERC20 transfers as well 47

MTS-20 Typo error 48

MTS-21 Open TODOs 49

MTS-22 Gas Optimization 50

MTS-23 ArbitrumBridgeAdapter::bridgeAsset() ignores the seqNumber returned by underlying bridge on
outbound transfer

53

Disclaimer 54

Mitosis

3

Summary

This report is prepared for the project to identify vulnerabilities and issues in the smart contract source

code. A group of NDA covered experienced security experts have participated in the Secure3’s Audit

Contest to find vulnerabilities and optimizations. Secure3 team has participated in the contest process

as well to provide extra auditing coverage and scrutiny of the finding submissions.

The comprehensive examination and auditing scope includes:

• Cross checking contract implementation against functionalities described in the documents and white

paper disclosed by the project owner.

• Contract Privilege Role Review to provide more clarity on smart contract roles and privilege.

• Using static analysis tools to analyze smart contracts against common known vulnerabilities patterns.

• Verify the code base is compliant with the most up-to-date industry standards and security best

practices.

• Comprehensive line-by-line manual code review of the entire codebase by industry experts.

The security assessment resulted in findings that are categorized in four severity levels: Critical,

Medium, Low, Informational. For each of the findings, the report has included recommendations of fix or

mitigation for security and best practices.

Mitosis

4

Overview

Project Name Mitosis

Language Solidity

Codebase
https://github.com/mitosis-org/evm

audit version - 7b06d163b7ee2ec41ca0dec704d5411b9b16cc41

final version - f6ce691336ab1d3396c6557fac6910f087820375

Audit Methodology
Audit Contest

Business Logic and Code Review

Privileged Roles Review

Static Analysis

https://github.com/mitosis-org/evm

Mitosis

5

Audit Scope

File SHA256 Hash

src/vault/BasicVault.sol 91dad4a0783b5bdee19b7b928af12ebd8621acfeede1c
718871913622a4fa7c8

src/vault/Cap.sol 2cae110325f2f47ac4d730e1f1013406ceee5ae23ebecf
40ac3cd18bafc4578f

src/helpers/ccdm/CCDMClient.sol 966592c5fc7b7cdb86a916b6c5627bb38b9d263d2ae
c1f947cc9bdb159ec8f64

src/vault/BasicVaultFactory.sol 9a58451f37d740802265d3e9193883bb966ac90fccd
c39a49653aa07d6674ce2

src/helpers/ccdm/CCDMHost.sol 15a9909ba92460a7be6c856d15df93e8641e89632d2
46ca75da31508317d36c3

src/helpers/ccdm/Message.sol f5253db06015172e246981cafe017f186a3c6436f18e5
da7ec27e7777e083b4b

src/interfaces/bridge/IPolygonZkEvmBridge.sol 9e1b0a5abea72d4b887fc46ac2aa79140bda2ab0542e
311d0fc63142bdc47e91

src/helpers/EETHDepositHelper.sol ecedef2b16e86b5e70c9f6875e15fbd20f02d86657ae5
83d07b4e7f78314c8b8

src/vault/VaultHub.sol f85d000130c25153eb1280c32d0601b1fba7a9e492a5
a81e787b0157cd16d9d2

src/interfaces/EtherFi.sol b61551446c5703d2d18ca2a34d8e7342856da5210ec
d361ae8df1e57c5f39037

src/interfaces/IVault.sol 2ad64ee70b1505073c80dc58e57c28705a6950fca0d
ee130bc7eb877b7a07239

src/helpers/adapter/ArbitrumBridgeAdapter.sol 32be4f440d744b266af63eb7c17d2f0cfefca5da751afd
78a059c60ab7f1dc36

src/lib/Error.sol 08df42edef8fd9185b6adf5e373ca02d0cdbf37b8ef71
0c869ed59345695cea1

src/helpers/adapter/PolygonZkEvmBridgeAdapter.sol 0374f58a4c93f4e5820a1dec11a2eb31dd99b66e2116c
819aaf5674a00de883a

src/helpers/adapter/OptimismBridgeAdapter.sol 82fa7239d0c04b98e2cce1df3e80a9fc2c5975e18489
9ab50b26c03932575a2d

src/interfaces/ICap.sol 489e7ddd3e164442afb51eff097724cd22b7c0252c29
2f82eb2275c94e5f265b

src/interfaces/bridge/IArbitrumGateway.sol 7c09459b5c76ab227bc81ba09683b2acb98a21a76ba
7d9b5b9ece418ccca457b

src/interfaces/bridge/IOptimismGateway.sol 712d183cb6c89d452557114b00d3ed20fbec3e8aba7c
dc9d85a5aecc7db5d344

src/interfaces/KelpDAO.sol 9f5f8dbdb673c7bb243295402051b9d71e670582b4f
522972b557a1734b522d5

Mitosis

6

src/lib/Conv.sol 7cd6a1b804652545826719241896748d2f1cdd2aed4a
50079c7ef253ffaa087c

src/entrypoint/Entrypoint.sol c71f132abd7ba14d58f7556237f30b6322c49c495715f
673e2d46e46554b53d8

src/interfaces/Renzo.sol bf48eef29bfc622b50091cf8a6d2333c0ed519470e36
b444dacc95aea9755c9d

src/interfaces/IVaultFactory.sol 5c0e27db5bc0b31de26c7e392d36494a5fcef49dd80
9b88e3896752aaf3d3622

src/interfaces/bridge/IBridgeAdapter.sol 0697ebefe40bee1d7032e329bf66705d229013767d2e
e9f1ea85a0c6b869701c

Mitosis

7

Code Assessment Findings

ID Name Category Severity Client Response Contributor

MTS-1 encodeRefund() and encodeB

ridge() function in Message

contract have wrong logic lea

ds to wrong behavior

Logical Critical Fixed 0xhuy0512, r
avikiran_web
3

MTS-2 ArbitrumBridgeAdapter::out

boundTransfer() and Polygo

nZkEvmBridgeAdapter::bridge

Asset() are payable functio

n but has no mechanism to for

ward msg.value resulting in

Denial of Service(DoS)

DOS Critical Fixed 0xzoobi

MTS-3 OpenZeppelin's SafeERC20.s

afePermit() is not follow EIP-

712

Signature For
gery or Repla
y

Critical Fixed 0xhuy0512, r
avikiran_web
3

MTS-4 Missing control in bridgeAsset

function

Privilege Rela
ted

Critical Fixed ravikiran_web
3

Mitosis

8

MTS-5 EETHDepositHelper contract

deposit wrong amount, causin

g can't deposit forever

Logical Critical Fixed 0xhuy0512, 0
xzoobi

MTS-6 Cap.sol contract can't send cr

osschain using Hyperlane bec

ause it doesn't hold any native

token as crosschain fee

Logical Critical Fixed 0xhuy0512

MTS-7 CCDM Host's token approval t

o wrong receiver

Logical Critical Fixed 0xhuy0512

MTS-8 Bridging token using native bri

dge send to wrong receiver

Logical Critical Fixed 0xhuy0512

MTS-9 User who hold vault token by t

rading can't redeem token to

earn back themself, make the

vault token useless

Logical Medium Mitigated 0xhuy0512

MTS-10 Unsupported Opcode in Multi

-Chain Deployment

Language Sp
ecific

Medium Fixed ret2basic

MTS-11 Underpayaing the L2 gas may

lead to loss of funds

DOS Medium Fixed 0xzoobi

MTS-12 The epoch assertion in _chec

kRemoteStateAndAdvance() fu

nction is not behave as expect

ed

Logical Medium Fixed 0xhuy0512

MTS-13 Not pulling token to Adapter c

ontracts lead to to can't bridg

e token crosschain using nativ

e bridge

Logical Medium Fixed 0xhuy0512

MTS-14 zkEVM bridge need an extra s

tep in L2 to successfully bridg

ed

Logical Low Acknowledged 0xhuy0512

MTS-15 Use Ownable2StepUpgradeabl

e instead of OwnableUpgradea

ble contract

Privilege Rela
ted

Low Fixed Meliclit, 0xzo
obi

MTS-16 The bridgeGateway addresse

s are hardcoded

DOS Low Fixed 0xzoobi

Mitosis

9

MTS-17 No whitelist token in CCDM H

ost lead to user can accidenta

lly losing token

Logical Low Fixed 0xhuy0512

MTS-18 Missing 0 amount check Logical Low Fixed ravikiran_web
3

MTS-19 Ensure no native asset value i

s sent in payable method tha

t can handle ERC20 transfers

as well

Logical Low Fixed 0xzoobi

MTS-20 Typo error Code Style Informational Fixed ravikiran_web
3

MTS-21 Open TODOs Code Style Informational Fixed Meliclit, raviki
ran_web3

MTS-22 Gas Optimization Gas Optimiza
tion

Informational Fixed 0xhuy0512

MTS-23 ArbitrumBridgeAdapter::bridg

eAsset() ignores the seqNum

ber returned by underlying bri

dge on outbound transfer

Code Style Informational Fixed ravikiran_web
3

Mitosis

10

MTS-1: encodeRefund() and encodeBridge() function in Message

contract have wrong logic leads to wrong behavior

Category Severity Client Response Contributor

Logical Critical Fixed 0xhuy0512, ravikiran_
web3

Code Reference
code/src/helpers/ccdm/Message.sol#L86

code/src/helpers/ccdm/Message.sol#L107-L109

code/src/helpers/ccdm/Message.sol#L108

86: return abi.encodePacked(MsgType.Deposit, msg_.receiver, msg_.token, msg_.amount);

107: function encodeBridge(MsgBridge memory msg_) internal pure returns (bytes memory) {
108: return abi.encodePacked(MsgType.Deposit, msg_.receiver, msg_.token, msg_.amount);
109: }

108: return abi.encodePacked(MsgType.Deposit, msg_.receiver, msg_.token, msg_.amount);

Description
0xhuy0512: 2 functions `encodeRefund()` and `encodeBridge()` both use `MsgType.Deposit` to encode the

message which is wrong. And because `MsgDeposit`, `MsgRefund`, `MsgBridge` structs is compatible to each other

(if not exactly the same), the protocol will mistaken refund and bridge requests to deposit requests without reverting
the transaction, breaking core functionality

 function encodeRefund(MsgRefund memory msg_) internal pure returns (bytes memory) {
 return abi.encodePacked(MsgType.Deposit, msg_.receiver, msg_.token, msg_.amount);
 }

 function encodeBridge(MsgBridge memory msg_) internal pure returns (bytes memory) {
 return abi.encodePacked(MsgType.Deposit, msg_.receiver, msg_.token, msg_.amount);
 }

ravikiran_web3: The encodeBridge() helper function in ccmd::message library uses an incorrect message type for
encoding the bridge message packet.
The functions for encoding and decoding are segregated for message types.
The message type is critical on how it will be handled and hence important to use the correct message type.

enum MsgType {
 Deposit,
 Refund,
 Bridge
}

Mitosis

11

Refer to the code below where the first parameter to abi.encodePacked should be MsgType.Bridge instead of
MsgType.Deposit

 function encodeBridge(MsgBridge memory msg_) internal pure returns (bytes memory) {
 return abi.encodePacked(MsgType.Deposit, msg_.receiver, msg_.token, msg_.amount);
 }

Recommendation
0xhuy0512:

 function encodeRefund(MsgRefund memory msg_) internal pure returns (bytes memory) {
- return abi.encodePacked(MsgType.Deposit, msg_.receiver, msg_.token, msg_.amount);
+ return abi.encodePacked(MsgType.Refund, msg_.receiver, msg_.token, msg_.amount);
 }

 function encodeBridge(MsgBridge memory msg_) internal pure returns (bytes memory) {
- return abi.encodePacked(MsgType.Deposit, msg_.receiver, msg_.token, msg_.amount);
+ return abi.encodePacked(MsgType.Bridge, msg_.receiver, msg_.token, msg_.amount);

 }

ravikiran_web3: Revise the encodeBridge function as below.

 function encodeBridge(MsgBridge memory msg_) internal pure returns (bytes memory) {
 return abi.encodePacked(MsgType.Bridge, msg_.receiver, msg_.token, msg_.amount);
 }

function encodeRefund(MsgRefund memory msg_) internal pure returns (bytes memory) {
 return abi.encodePacked(MsgType.Refund, msg_.receiver, msg_.token, msg_.amount);
 }

Client Response
Fixed.
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/ccdm/Mes
sage.sol#L92
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/ccdm/Mes
sage.sol#L114
Fixed.
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/ccdm/Mes
sage.sol#L92
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/ccdm/Mes
sage.sol#L114

https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/ccdm/Message.sol#L92
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/ccdm/Message.sol#L92
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/ccdm/Message.sol#L114
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/ccdm/Message.sol#L114
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/ccdm/Message.sol#L92
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/ccdm/Message.sol#L92
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/ccdm/Message.sol#L114
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/ccdm/Message.sol#L114

Mitosis

12

MTS-2: ArbitrumBridgeAdapter::outboundTransfer() and Polygo

nZkEvmBridgeAdapter::bridgeAsset() are payable function but

has no mechanism to forward msg.value resulting in Denial of

Service(DoS)

Category Severity Client Response Contributor

DOS Critical Fixed 0xzoobi

Code Reference
code/src/helpers/adapter/ArbitrumBridgeAdapter.sol#L33-L35

33: function bridgeAsset(address destAddr, address l1Asset, address, uint256 amount) external {
34: bridge.outboundTransfer(l1Asset, destAddr, amount, maxGas, gasPriceBid, "");
35: }

code/src/helpers/adapter/PolygonZkEvmBridgeAdapter.sol#L23-L25

23: function bridgeAsset(address destAddr, address l1Asset, address, uint256 amount) external {
24: bridge.bridgeAsset(destNetwork, destAddr, amount, l1Asset, forceUpdateGlobalExitRoot,
"");
25: }

code/src/interfaces/bridge/IArbitrumGateway.sol#L6-L13

6: function outboundTransfer(
7: address _token,
8: address _to,
9: uint256 _amount,
10: uint256 _maxGas,
11: uint256 _gasPriceBid,
12: bytes calldata _data
13:) external payable returns (bytes memory);

code/src/interfaces/bridge/IPolygonZkEvmBridge.sol#L71-L78

71: function bridgeAsset(
72: uint32 destinationNetwork,
73: address destinationAddress,
74: uint256 amount,
75: address token,
76: bool forceUpdateGlobalExitRoot,
77: bytes calldata permitData
78:) external payable;

Description

Mitosis

13

0xzoobi: If the `outboundTransfer` function is declared as `payable` in the interface, it signifies its ability to

receive and manage `msg.value`. However, it appears that the present implementation of `bridgeAsset` fails to

consider this, resulting in the inability to forward any `msg.value`.
To resolve this issue, it is essential to ensure that the implementation of `outboundTransfer` in the `BridgeAsset`
contract appropriately handles the incoming `msg.value` and forwards it as needed.

In the current implementation, all calls made to `ArbitrumBridgeAdapter::bridgeAsset()` will revert because the

existing code lacks the capability to transfer `msg.value`. A similar issue is also present in the `PolygonZkEvmBridge
Adapter::bridgeAsset()`.
Proof of Concept - Run via REMIX IDE
Steps

1. Deploy `SimpleWallet`

2. Deploy `SimpleWalletWrapper` by passing address of `SimpleWallet` in the constructor

3. First call the `depositHelper` function, the call will revert.

4. Now, call the `depositHelperOne`, which is the fix.

Mitosis

14

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

contract SimpleWalletWrapper {

 SimpleWallet public testContract;
 constructor(address _simpleWallet) {
 testContract = SimpleWallet(_simpleWallet);
 }

 //The Current Issue
 function depositHelper() external {
 testContract.depositIT();
 }

 //The FIX
 function depositHelperOne() external payable {
 (bool success,) = address(testContract).call{value: msg.value}(abi.encodeWithSignature("de
positIT()"));
 require(success, "External call failed");
 }

}

contract SimpleWallet {
 mapping(address => uint256) public balances;
 event Deposit(address indexed depositor, uint256 amount);

 constructor() {
 }

 function depositIT() public payable {
 require(msg.value > 0, "Deposit amount must be greater than 0");
 balances[msg.sender] += msg.value;
 emit Deposit(msg.sender, msg.value);
 }

 function getContractBalance() external view returns (uint256) {
 return address(this).balance;
 }
}

Recommendation
0xzoobi: To resolve the issue, start by making the `bridgeAsset` function payable. Next, when invoking `bridge.ou
tboundTransfer`, forward the received Ether as `msg.value`.

Mitosis

15

The call to the function will work even if the `msg.value == 0` , since the root cause of the issue is the syntax.

Sample Fix:

function bridgeAsset(address destAddr, address l1Asset, uint256 amount) external payable {
 (bool success, bytes memory data) = address(bridge).call{value: msg.value}(
 abi.encodeWithSignature("outboundTransfer(address,uint256,uint256,uint256,bytes)", l1A
sset, destAddr, amount, maxGas, gasPriceBid, "");
);
 require(success, "External call to stakeNFT failed");
}

Client Response
Fixed,For Arbitrum adapter, fixed via integrating ATM contract.
And for the PolygonZkEvm side, it's not actually accepts it. (ref: https://etherscan.io/tx/0x82e0c34ce8a4ce50c4b2
9b711163773c34868fe520200a89d5073c46295d5ab9)

https://etherscan.io/tx/0x82e0c34ce8a4ce50c4b29b711163773c34868fe520200a89d5073c46295d5ab9
https://etherscan.io/tx/0x82e0c34ce8a4ce50c4b29b711163773c34868fe520200a89d5073c46295d5ab9

Mitosis

16

MTS-3:OpenZeppelin's SafeERC20.safePermit() is not follow EIP-

712

Category Severity Client Response Contributor

Signature Forgery or R
eplay

Critical Fixed 0xhuy0512, ravikiran_
web3

Code Reference
code/src/helpers/EETHDepositHelper.sol#L44-L47

code/src/helpers/EETHDepositHelper.sol#L45

code/src/helpers/EETHDepositHelper.sol#L54-L57

code/src/helpers/EETHDepositHelper.sol#L55

44: function deposit(uint256 amount, address vault, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
external {
45: SafeERC20.safePermit(_eETH, _msgSender(), address(this), amount, deadline, v, r, s);
46: _deposit(amount, vault);
47: }

45: SafeERC20.safePermit(_eETH, _msgSender(), address(this), amount, deadline, v, r, s);

54: function redeem(uint256 amount, address vault, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
external {
55: SafeERC20.safePermit(IERC20Permit(vault), _msgSender(), address(this), amount, deadline,
v, r, s);
56: _redeem(amount, vault);
57: }

55: SafeERC20.safePermit(IERC20Permit(vault), _msgSender(), address(this), amount, deadline, v, r,
s);

Description
0xhuy0512: OpenZeppelin's `SafeERC20.safePermit()` got deprecated because of this issue: https://www.trust-se

curity.xyz/post/permission-denied
ravikiran_web3: Signatures should be protected against replay attack with a nonce and block.chainid and domain to
ensure the same signature cannot be replayed across domains or chains.
But the below functions ETHDepositHelper does not take into account the domain or chainid.

function deposit(uint256 amount, address vault, uint256 deadline, uint8 v, bytes32 r, bytes32 s) e
xternal {
 SafeERC20.safePermit(_eETH, _msgSender(), address(this), amount, deadline, v, r, s);
 _deposit(amount, vault);
 }

https://www.trust-security.xyz/post/permission-denied
https://www.trust-security.xyz/post/permission-denied

Mitosis

17

function redeem(uint256 amount, address vault, uint256 deadline, uint8 v, bytes32 r, bytes32 s) ex
ternal {
 SafeERC20.safePermit(IERC20Permit(vault), _msgSender(), address(this), amount, deadline,
v, r, s);
 _redeem(amount, vault);
 }

Recommendation
0xhuy0512: Consider not use safePermit()
ravikiran_web3: EIP-712 should be followed to ensure the signatures are not replayed.

Client Response
Fixed,https://github.com/mitosis-org/evm/pull/45
Fixed,https://github.com/mitosis-org/evm/pull/45

https://github.com/mitosis-org/evm/pull/45
https://github.com/mitosis-org/evm/pull/45

Mitosis

18

MTS-4:Missing control in bridgeAsset function

Category Severity Client Response Contributor

Privilege Related Critical Fixed ravikiran_web3

Code Reference
code/src/helpers/adapter/ArbitrumBridgeAdapter.sol#L33-L35

33: function bridgeAsset(address destAddr, address l1Asset, address, uint256 amount) external {
34: bridge.outboundTransfer(l1Asset, destAddr, amount, maxGas, gasPriceBid, "");
35: }

code/src/helpers/adapter/OptimismBridgeAdapter.sol#L19-L21

19: function bridgeAsset(address destAddr, address l1Asset, address l2Asset, uint256 amount) externa
l {
20: bridge.depositERC20To(l1Asset, l2Asset, destAddr, amount, minGasLimit, "");
21: }

code/src/helpers/adapter/PolygonZkEvmBridgeAdapter.sol#L23-L25

23: function bridgeAsset(address destAddr, address l1Asset, address, uint256 amount) external {
24: bridge.bridgeAsset(destNetwork, destAddr, amount, l1Asset, forceUpdateGlobalExitRoot,
"");
25: }

Description
ravikiran_web3: bridgeAsset() function is used to send msg to the destination chain via bridge.
This function is being called by Crosschain deposit manager host in the _handle() function. The handle function has
all the checks before the message is sent to the bridge.
The vulnerability is that for all the below three adaptors, there is no access restriction for bridgeAsset() function.
This means any one can call this function without meeting the other checks implemented in dispatch() and handle()
functions.
The cross bridge communication functions should be restrictions with permissions so that only qualified contracts
can call after all checking is done. Leave this open ended means, attacker can dispatch messages on one side of the
bridge breaking the symmetry of tokens across the bridges. Its means, without send tokens from one chain, there is
a possibility to make a deposit on the other chain.

1. ArbitrumBridgeAdapter

2. OptimismBridgeAdapter

3. PolygonZkEvmBridgeAdapter

 function bridgeAsset(address destAddr, address l1Asset, address, uint256 amount) external {
 bridge.outboundTransfer(l1Asset, destAddr, amount, maxGas, gasPriceBid, "");
 }

Mitosis

19

function bridgeAsset(address destAddr, address l1Asset, address l2Asset, uint256 amount) external
{
 bridge.depositERC20To(l1Asset, l2Asset, destAddr, amount, minGasLimit, "");
 }

 function bridgeAsset(address destAddr, address l1Asset, address, uint256 amount) external {
 bridge.bridgeAsset(destNetwork, destAddr, amount, l1Asset, forceUpdateGlobalExitRoot, "");
 }

Hence each of these bridgeAsset() function on adaptors should be restricted to CCDM Host contract.

Recommendation
ravikiran_web3: Restrict the bridgeAsset() so that it can only be called by Crosschain deposit manager host(CCDM
Host) contract.

Client Response
Fixed by make theses functions only callable by allowed accounts.

Mitosis

20

MTS-5:EETHDepositHelper contract deposit wrong amount,

causing can't deposit forever

Category Severity Client Response Contributor

Logical Critical Fixed 0xhuy0512, 0xzoobi

Code Reference
code/src/helpers/EETHDepositHelper.sol#L66-L67

code/src/helpers/EETHDepositHelper.sol#L66-L67

66: SafeERC20.safeIncreaseAllowance(_weETH, address(vault), weETHAmount);
67: IVault(vault).deposit(amount, _msgSender());

66: SafeERC20.safeIncreaseAllowance(_weETH, address(vault), weETHAmount);
67: IVault(vault).deposit(amount, _msgSender());

Description
0xhuy0512: Function `_deposit()` after warping eETH to weETH, it approves to vault with `weETHAmount` of

weETH, but then deposit to vault `amount` of weETH. Note that `weETHAmount` and `amount` is different, the ratio

got calculated in here, which is weETHAmount : amount = 0.969e18 : 1e18. Because `amount > weETHAmount`, this
will make the transaction reverted because not enough approval token, breaking core functionality

 function _deposit(uint256 amount, address vault) internal {
 SafeERC20.safeTransferFrom(_eETH, _msgSender(), address(this), amount);
 SafeERC20.safeIncreaseAllowance(_eETH, address(_weETH), amount);
 uint256 weETHAmount = _weETH.wrap(amount);

 SafeERC20.safeIncreaseAllowance(_weETH, address(vault), weETHAmount); //<@@ approve weETHA
mount
 IVault(vault).deposit(amount, _msgSender()); //<@@ use amount
 }

0xzoobi: The `_deposit` function is intended for facilitating token deposits into a vault. However, there is a potential

inconsistency in variable usage when calling the deposit function of the `IVault` contract. The correct approach is

to invoke `IVault(vault).deposit` with the parameter `weETHAmount` instead of `amount`. Please refer to the
specific location in the code for precise details. This implementation is likely to function correctly in most conditions,
given the 1:1 mapping.
But, It is crucial to note a past scenario where `stETH` lost its peg with `ETH`; further details can be found in this

blog: https://www.nansen.ai/research/on-chain-forensics-demystifying-steth-depeg
In the event of a similar scenario, it has the potential to generate unpredictable outcomes. It is advisable to prefer
safety over risking adverse consequences.

Recommendation
0xhuy0512:

https://etherscan.io/address/0xe629ee84c1bd9ea9c677d2d5391919fcf5e7d5d9#code#F1#L51
https://etherscan.io/address/0x308861A430be4cce5502d0A12724771Fc6DaF216#readProxyContract#F30
https://www.nansen.ai/research/on-chain-forensics-demystifying-steth-depeg

Mitosis

21

 function _deposit(uint256 amount, address vault) internal {
 SafeERC20.safeTransferFrom(_eETH, _msgSender(), address(this), amount);
 SafeERC20.safeIncreaseAllowance(_eETH, address(_weETH), amount);
 uint256 weETHAmount = _weETH.wrap(amount);

 SafeERC20.safeIncreaseAllowance(_weETH, address(vault), weETHAmount);
- IVault(vault).deposit(amount, _msgSender());
+ IVault(vault).deposit(weETHAmount, _msgSender());
 }

0xzoobi: To fix the issue make the following changes in the `EETHDepositHelper::_deposit()`

SafeERC20.safeIncreaseAllowance(_weETH, address(vault), weETHAmount);
- IVault(vault).deposit(amount, _msgSender());
+ IVault(vault).deposit(weETHAmount, _msgSender());

Client Response
Fixed,We've added `_wrap` function and use its return value directly to `_deposit` - It would fix this issue

https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/EETHDepo
sitHelper.sol#L99
Fixed,We've added _wrap function and use its return value directly to _deposit - It would fix this issue
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/EETHDepo
sitHelper.sol#L99

https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/EETHDepositHelper.sol#L99
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/EETHDepositHelper.sol#L99
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/EETHDepositHelper.sol#L99
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/EETHDepositHelper.sol#L99

Mitosis

22

MTS-6:Cap.sol contract can't send crosschain using Hyperlane

because it doesn't hold any native token as crosschain fee

Category Severity Client Response Contributor

Logical Critical Fixed 0xhuy0512

Code Reference
code/src/vault/Cap.sol#L232

232: _dispatch(domains[i], fee, msgCapFilled);

Description
0xhuy0512: Contract `Cap.sol` doesn't have any method to receive native token except `handle()` function which

is can only be called by Hyperlane's Mailbox (only send native token when there's exceed fee paid). And because of
that, there's no way for `Cap` contract to send crosschain message using Hyperlane to announce that the epoch cap

is filled, which broke the core functionality

Recommendation
0xhuy0512: Add a `receive()` function in Cap contract so that it can hold native token

Client Response
Fixed,We've fixed this by integrating ATM with Cap

 function _broadcastEpoch(IATM atm_, uint32[] memory domains, bytes memory msg_) internal {
 for (uint256 i = 0; i < domains.length; i++) {
 uint256 fee = _quoteDispatch(domains[i], msg_);

 if (address(atm_) != address(0x0)) atm_.borrow(fee);

 dispatch(domains[i], fee, msg);
 }
 }

Mitosis

23

MTS-7:CCDM Host's token approval to wrong receiver

Category Severity Client Response Contributor

Logical Critical Fixed 0xhuy0512

Code Reference
code/src/helpers/ccdm/CCDMHost.sol#L147

147: SafeERC20.safeIncreaseAllowance(IERC20(l1Asset), address(this), msgBridge.amount);

Description
0xhuy0512: When bridging token in CCDMHost using native bridge, CCDMHost should approve token to bridge
adapter in order to transfer it to native bridge. But for some reason, CCDMHost approve token to itself:

 SafeERC20.safeIncreaseAllowance(IERC20(l1Asset), address(this), msgBridge.amount);

Because of this, all of the bridge transaction will be reverted because there's no token approved for bridge to
transfer

Recommendation
0xhuy0512: Approve to the bridge adapter instead:

+ SafeERC20.safeIncreaseAllowance(IERC20(l1Asset), address(this), msgBridge.amount);
- SafeERC20.safeIncreaseAllowance(IERC20(l1Asset), address($._bridges[origin]), msgBrid
ge.amount);

Client Response
Fixed,https://github.com/mitosis-org/evm/blob/83a419a39c24f7cf81a671952c8bd33b00c186ec/src/helpers/ccd
m/CCDMHost.sol#L243

https://github.com/mitosis-org/evm/blob/83a419a39c24f7cf81a671952c8bd33b00c186ec/src/helpers/ccdm/CCDMHost.sol#L243
https://github.com/mitosis-org/evm/blob/83a419a39c24f7cf81a671952c8bd33b00c186ec/src/helpers/ccdm/CCDMHost.sol#L243

Mitosis

24

MTS-8:Bridging token using native bridge send to wrong receiver

Category Severity Client Response Contributor

Logical Critical Fixed 0xhuy0512

Code Reference
code/src/helpers/ccdm/CCDMHost.sol#L149

149: $._bridges[origin].bridgeAsset(sender.toAddress(), l1Asset, l2Asset, msgBridge.amount);

Description
0xhuy0512: As the docs in Notion said:

Step X. Process bridge request from L2

CCDM Client -> Hyperlane -> CCDM Host -> Bridge Adapter -> Vault

CCDM Host will use bridge adapter to send token to L2 vault. But in the code, CCDM Host will send token to L2
CCDM Client:

 function _handle(uint32 origin, bytes32 sender, bytes calldata rawMsg) internal override {
 ...
 } else if (msgType == MsgType.Bridge) {
 MsgBridge memory msgBridge = Message.decodeBridge(rawMsg);

 StorageV1 storage $ = _getStorageV1();

 address l1Asset = msgBridge.token.toAddress();
 address l2Asset = $._assetL1L2Map[origin][l1Asset];

 SafeERC20.safeIncreaseAllowance(IERC20(l1Asset), address(this), msgBridge.amount);

@@@@> $._bridges[origin].bridgeAsset(sender.toAddress(), l1Asset, l2Asset, msgBridge.amoun
t);
 }

The receiver of token in L2 here is `sender.toAddress()` which is the address of caller that sent Bridge message to

CCDM, which is L2 CCDM Client in `adjust()` function. And because CCDMClient is not desgined to hold any

token, there's no way to take token out, leads to token stuck forever when bridging

Recommendation
0xhuy0512:

Mitosis

25

+ $._bridges[origin].bridgeAsset(msgBridge.receiver.toAddress(), l1Asset, l2Asset, msgB
ridge.amount);
- $._bridges[origin].bridgeAsset(sender.toAddress(), l1Asset, l2Asset, msgBridge.amoun
t);

Client Response
Fixed,https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/ccd
m/CCDMHost.sol#L235

https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/ccdm/CCDMHost.sol#L235
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/ccdm/CCDMHost.sol#L235

Mitosis

26

MTS-9:User who hold vault token by trading can't redeem token to

earn back themself, make the vault token useless

Category Severity Client Response Contributor

Logical Medium Mitigated 0xhuy0512

Code Reference
code/src/vault/BasicVault.sol#L258-L263

258: DepositInfo storage info = $._deposits[receiver];
259:
260: if (info.logs.length == 0) {
261: info.resolved -= amount;
262: return;
263: }

Description
0xhuy0512: Because vault token is tradable, the original owner can transfer/trade to someone else. But the problem
is that the new owner can't execute `BasicVault.redeem()` because the new owner's deposit logs is empty, hence

will get DOS in `_pruneDepositLog()`. Because of that, the vault token in new owner will become useless. Malicious

user can use this issues to sell vault token to naive seller

 function _pruneDepositLog(uint256 amount, address receiver) internal {
 UtilStorageV1 storage $ = _getUtilStorageV1();

 if ($._redeemPeriod <= 0) {
 return;
 }

 DepositInfo storage info = $._deposits[receiver];

 if (info.logs.length == 0) {
 info.resolved -= amount; <@@ DOS here
 return;
 }

 ...
 }

Recommendation
0xhuy0512: There're 2 ways to fix this:

1. Quick way: make the vault token nontransferable, use msg.sender's DepositLog to deduct when redeem instead
of receiver

Mitosis

27

2. Long and better way: make a logic that will transfer log from transferrer user to transferred user that will be
executed when transferring vault token

Client Response
Mitigated,We've decided to bypass the redeem period by setting the parameter value to zero. Additionally, we're
planning to switch to implementing an unstaking period rather than a redeem period. The main difference between
unstaking and redeeming is that the unstaking period will start when a user executes a redeem, while the redeem
period will start when a user executes a deposit.

Mitosis

28

MTS-10:Unsupported Opcode in Multi-Chain Deployment

Category Severity Client Response Contributor

Language Specific Medium Fixed ret2basic

Code Reference
code/src/helpers/ccdm/CCDMClient.sol#L2

2: pragma solidity 0.8.23;

code/src/helpers/ccdm/CCDMHost.sol#L2

2: pragma solidity 0.8.23;

code/src/vault/BasicVault.sol#L2

2: pragma solidity 0.8.23;

code/src/vault/BasicVaultFactory.sol#L2

2: pragma solidity 0.8.23;

code/src/vault/Cap.sol#L2

2: pragma solidity 0.8.23;

Description
ret2basic: The primary concern identified in the smart contracts relates to the Solidity compiler version used,
specifically `pragma solidity 0.8.23;`. This version, along with every version after `0.8.19`, introduces the use of
the `PUSH0` opcode. This opcode is not universally supported across all Ethereum Virtual Machine (EVM)-based

Layer 2 (L2) solutions. For instance, ZKSync, one of the targeted platforms for this protocol's deployment, does not
currently support the `PUSH0` opcode.

The consequence of this incompatibility is that contracts compiled with Solidity versions higher than `0.8.19` may

not function correctly or fail to deploy on certain L2 solutions.
The impact of using a Solidity compiler version that includes the PUSH0 opcode is significant for a protocol intended
to operate across multiple EVM-based chains. Chains that do not support this opcode will not be able to execute the
contracts as intended, resulting in a range of issues from minor malfunctions to complete deployment failures. This
limitation directly affects the protocol's goal of wide compatibility and interoperability, potentially excluding it from
deployment on key L2 solutions like ZKsync.

Recommendation
ret2basic: To mitigate this issue and ensure broader compatibility with various EVM-based L2 solutions, it is
recommended to downgrade the Solidity compiler version used in the smart contracts to 0.8.19. This version does

Mitosis

29

not utilize the PUSH0 opcode and therefore maintains compatibility with a wider range of L2 solutions, including
ZKsync.

- pragma solidity 0.8.23;
+ pragma solidity 0.8.19;

This change will allow the protocol to maintain a consistent and deterministic bytecode across all targeted chains,
ensuring functionality and deployment success on platforms that currently do not support the PUSH0 opcode.

Client Response
Fixed,We've fixed by changing hardfork version of compiler to Paris

Mitosis

30

MTS-11:Underpayaing the L2 gas may lead to loss of funds

Category Severity Client Response Contributor

DOS Medium Fixed 0xzoobi

Code Reference
code/src/helpers/adapter/OptimismBridgeAdapter.sol#L9

code/src/helpers/adapter/OptimismBridgeAdapter.sol#L20

9: IOptimismGateway public immutable bridge;

20: bridge.depositERC20To(l1Asset, l2Asset, destAddr, amount, minGasLimit, "");

Description
0xzoobi: In the current implementation, the `minGasLimit` is declared as `immutable`. Consequently, if there is a
need to update this value for any reason, it is not possible. This limitation could have significant consequences,
especially in scenarios where there is a sudden spike in gas prices on the current Layer 2 (L2). In such a situation, if
the current gas limit is considerably higher than the set value of `minGasLimit`, users may incur losses when using `
bridge.depositERC20To`.
Similar instance reported in a Spearbit Security Review of Li.Fi Bridge Issue 5.2.7 - https://github.com/spearbit/po
rtfolio/blob/master/pdfs/LIFI-Spearbit-Security-Review.pdf

Recommendation
0xzoobi: To address the issue, introduce a setter function for `minGasLimit`. This will provide the flexibility to
update the value when needed.
Here's an example:

 function setMinGasLimit(uint256 _newMinGasLimit) external onlyOwner {
 minGasLimit = _newMinGasLimit;
 }

Client Response
Fixed by introducing setters for each parameters
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/adapter/Ar
bitrumBridgeAdapter.sol#L106

https://github.com/spearbit/portfolio/blob/master/pdfs/LIFI-Spearbit-Security-Review.pdf
https://github.com/spearbit/portfolio/blob/master/pdfs/LIFI-Spearbit-Security-Review.pdf
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/adapter/ArbitrumBridgeAdapter.sol#L106
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/adapter/ArbitrumBridgeAdapter.sol#L106

Mitosis

31

MTS-12:The epoch assertion in _checkRemoteStateAndAdvance()

function is not behave as expected

Category Severity Client Response Contributor

Logical Medium Fixed 0xhuy0512

Code Reference
code/src/vault/Cap.sol#L261-L272

261: // 1. find the minimum epoch among all remote chains.
262: // 2. check the every remote chain's epoch is same as the min epoch.
263: for (uint256 i = 1; i < domains.length; i++) {
264: uint256 epochForDomain = $._epoch[domains[i]];
265:
266: if (epochForDomain < nextEpoch) {
267: nextEpoch = epochForDomain;
268: }
269: if (epochForDomain != nextEpoch) {
270: return;
271: }
272: }

Description
0xhuy0512: As the dev's comment said:

 // 1. find the minimum epoch among all remote chains.
 // 2. check the every remote chain's epoch is same as the min epoch.

But the logic execute differently:

 for (uint256 i = 1; i < domains.length; i++) {
 uint256 epochForDomain = $._epoch[domains[i]];

 if (epochForDomain < nextEpoch) {
 nextEpoch = epochForDomain;
 }
 if (epochForDomain != nextEpoch) {
 return;
 }
 }

The loop actually just check if the domains array is an descending array or not:

`domains = [3,2,2,1]` -> not return

`domains = [3,2,1,0]` -> not return

`domains = [3,2,2,3]` -> return

Mitosis

32

Moreover, in `1. find the minimum epoch among all remote chains.` should be calculate in a separate loop to

find the minimum epoch

Recommendation
0xhuy0512:

 for (uint256 i = 1; i < domains.length; i++) {
 uint256 epochForDomain = $._epoch[domains[i]];

 if (epochForDomain < nextEpoch) {
 nextEpoch = epochForDomain;
 }
- if (epochForDomain != nextEpoch) {
- return;
- }
 }

+ for (uint256 i = 1; i < domains.length; i++) {
+ uint256 epochForDomain = $._epoch[domains[i]];

+ if (epochForDomain != nextEpoch) {
+ return;
+ }
+ }

Client Response
Fixed by recommended approach.
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/vault/Cap.sol#L32
4-L338

https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/vault/Cap.sol#L324-L338
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/vault/Cap.sol#L324-L338

Mitosis

33

MTS-13:Not pulling token to Adapter contracts lead to to can't

bridge token crosschain using native bridge

Category Severity Client Response Contributor

Logical Medium Fixed 0xhuy0512

Code Reference
code/src/helpers/adapter/ArbitrumBridgeAdapter.sol#L34

34: bridge.outboundTransfer(l1Asset, destAddr, amount, maxGas, gasPriceBid, "");

code/src/helpers/adapter/OptimismBridgeAdapter.sol#L20

20: bridge.depositERC20To(l1Asset, l2Asset, destAddr, amount, minGasLimit, "");

code/src/helpers/adapter/PolygonZkEvmBridgeAdapter.sol#L24

24: bridge.bridgeAsset(destNetwork, destAddr, amount, l1Asset, forceUpdateGlobalExitRoot, "");

code/src/helpers/ccdm/CCDMHost.sol#L147-L150

147: SafeERC20.safeIncreaseAllowance(IERC20(l1Asset), address(this), msgBridge.amount);
148:
149: $._bridges[origin].bridgeAsset(sender.toAddress(), l1Asset, l2Asset, msgBridge.amoun
t);
150: }

Description
0xhuy0512: This issue happens in both 3 adapter contract: ArbitrumBridgeAdapter, OptimismBridgeAdapter,
PolygonZkEvmBridgeAdapter
In CCDMHost contract, when bridging token using native bridge, it will first approve token to adapter then call to
adapter's `bridgeAsset()`:

Mitosis

34

 } else if (msgType == MsgType.Bridge) {
 MsgBridge memory msgBridge = Message.decodeBridge(rawMsg);

 StorageV1 storage $ = _getStorageV1();

 address l1Asset = msgBridge.token.toAddress();
 address l2Asset = $._assetL1L2Map[origin][l1Asset];

 SafeERC20.safeIncreaseAllowance(IERC20(l1Asset), address(this), msgBridge.amount);

 $._bridges[origin].bridgeAsset(sender.toAddress(), l1Asset, l2Asset, msgBridge.amoun
t);

But both 3 adapters lack a logic that pulling back the token to themselves and approve that token to the native
bridge. Because of that, bridging will always get reverted, breaking the core function

Recommendation
0xhuy0512: Add this line to both three adapters:

 function bridgeAsset(...) external {
+ IERC20(l1Asset).safeTransferFrom(msg.sender, address(this), amount);
+ IERC20(l1Asset).safeApprove(bridge, amount);
 ...
 }

Client Response
Fixed by adding approve statement https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea87356
95a454feb4/src/helpers/adapter/ArbitrumBridgeAdapter.sol#L132-L135

https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/adapter/ArbitrumBridgeAdapter.sol#L132-L135
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/adapter/ArbitrumBridgeAdapter.sol#L132-L135

Mitosis

35

MTS-14:zkEVM bridge need an extra step in L2 to successfully

bridged

Category Severity Client Response Contributor

Logical Low Acknowledged 0xhuy0512

Code Reference
code/src/helpers/adapter/ArbitrumBridgeAdapter.sol#L33-L35

33: function bridgeAsset(address destAddr, address l1Asset, address, uint256 amount) external {
34: bridge.outboundTransfer(l1Asset, destAddr, amount, maxGas, gasPriceBid, "");
35: }

code/src/helpers/adapter/OptimismBridgeAdapter.sol#L19-L21

19: function bridgeAsset(address destAddr, address l1Asset, address l2Asset, uint256 amount) externa
l {
20: bridge.depositERC20To(l1Asset, l2Asset, destAddr, amount, minGasLimit, "");
21: }

code/src/helpers/adapter/PolygonZkEvmBridgeAdapter.sol#L23-L25

23: function bridgeAsset(address destAddr, address l1Asset, address, uint256 amount) external {
24: bridge.bridgeAsset(destNetwork, destAddr, amount, l1Asset, forceUpdateGlobalExitRoot,
"");
25: }

Description
0xhuy0512: https://docs.polygon.technology/zkEVM/architecture/protocol/zkevm-bridge/flow-of-assets/#asset-fl
ow-from-l1-l2 :

“5. In order to complete the bridging process, the user calls the Claim function of the Bridge SC and provides a
Merkle proof to the fact that the correct exit leaf was included and represented in the Global Exit Root.”

zkEVM bridge need user to call to `claimAsset()` in L2 in order to successfully bridged. As the token receiver in L2

is BasicVault contract, we should make a fuction in PolygonZkEVM's BasicVault to claim the asset

Recommendation
0xhuy0512: Make a function in BasicVault that call to this PolygonZkEVMBridge's function: https://github.com/0xPo
lygonHermez/zkevm-contracts/blob/53e95f3a236d8bea87c27cb8714a5d21496a3b20/contracts/PolygonZkEVM
Bridge.sol#L311C1-L322C37

Client Response
Acknowledged, Executing claim has allowed for third-party. So we can just running our bot or depending on other
bots like Zenland:deployer

https://docs.polygon.technology/zkEVM/architecture/protocol/zkevm-bridge/flow-of-assets/#asset-flow-from-l1-l2
https://docs.polygon.technology/zkEVM/architecture/protocol/zkevm-bridge/flow-of-assets/#asset-flow-from-l1-l2
https://github.com/0xPolygonHermez/zkevm-contracts/blob/53e95f3a236d8bea87c27cb8714a5d21496a3b20/contracts/PolygonZkEVMBridge.sol#L311C1-L322C37
https://github.com/0xPolygonHermez/zkevm-contracts/blob/53e95f3a236d8bea87c27cb8714a5d21496a3b20/contracts/PolygonZkEVMBridge.sol#L311C1-L322C37
https://github.com/0xPolygonHermez/zkevm-contracts/blob/53e95f3a236d8bea87c27cb8714a5d21496a3b20/contracts/PolygonZkEVMBridge.sol#L311C1-L322C37
https://zkevm.polygonscan.com/address/0x4ca25c4e560fb5adc3ff43eb0ad82ee0cd84aace

Mitosis

36

the situation like the claim can be callable by third party and still needs to fetch merkle proof from offchain makes
the CCDMClient cannot from their deposit. Hence the Low severity is more appropriate

Mitosis

37

MTS-15:Use Ownable2StepUpgradeable instead of OwnableUpgrade

able contract

Category Severity Client Response Contributor

Privilege Related Low Fixed Meliclit, 0xzoobi

Code Reference
code/src/vault/BasicVault.sol#L74

code/src/vault/BasicVault.sol#L74

74: OwnableUpgradeable,

74: OwnableUpgradeable,

code/src/vault/BasicVaultFactory.sol#L41

code/src/vault/BasicVaultFactory.sol#L41

41: contract BasicVaultFactory is IVaultFactory, OwnableUpgradeable, BasicVaultFactoryStorageV1 {

41: contract BasicVaultFactory is IVaultFactory, OwnableUpgradeable, BasicVaultFactoryStorageV1 {

code/src/vault/Cap.sol#L36

code/src/vault/Cap.sol#L36

36: contract Cap is ICap, OwnableUpgradeable, Router, CapStorageV1 {

36: contract Cap is ICap, OwnableUpgradeable, Router, CapStorageV1 {

code/src/vault/VaultHub.sol#L5

code/src/vault/VaultHub.sol#L5

5: import {OwnableUpgradeable} from "@ozu/access/OwnableUpgradeable.sol";

5: import {OwnableUpgradeable} from "@ozu/access/OwnableUpgradeable.sol";

Description
Meliclit: Use the Ownable2Step variant of the Ownable contract to better safeguard against accidental transfers of
access control.
0xzoobi: The contracts does not implement a 2-Step-Process for transferring ownership.
So ownership of the contract can easily be lost when making a mistake when transferring ownership.
Since the privileged roles have critical function roles assigned to them. Assigning the ownership to a wrong user can
be disastrous.

Mitosis

38

So Consider using the Ownable2StepUpgradeable contract from OZ (https://github.com/OpenZeppelin/openzeppeli
n-contracts-upgradeable/blob/v5.0.0/contracts/access/Ownable2StepUpgradeable.sol instead.
The way it works is there is a `transferOwnership` to transfer the ownership and `acceptOwnership` to accept the

ownership. Refer the above Ownable2Step.sol for more details.

Recommendation
Meliclit: Use `Ownable2StepUpgradeable`
0xzoobi: Implement 2-Step-Process for transferring ownership via Ownable2Step.

Client Response
Fixed,https://github.com/mitosis-org/evm/pull/44
Fixed,https://github.com/mitosis-org/evm/pull/44

https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/v5.0.0/contracts/access/Ownable2StepUpgradeable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/v5.0.0/contracts/access/Ownable2StepUpgradeable.sol
https://github.com/mitosis-org/evm/pull/44
https://github.com/mitosis-org/evm/pull/44

Mitosis

39

MTS-16:The bridgeGateway addresses are hardcoded

Category Severity Client Response Contributor

DOS Low Fixed 0xzoobi

Code Reference
code/src/helpers/adapter/ArbitrumBridgeAdapter.sol#L11

11: IArbitrumGateway public immutable bridge;

code/src/helpers/adapter/OptimismBridgeAdapter.sol#L9

9: IOptimismGateway public immutable bridge;

code/src/helpers/adapter/PolygonZkEvmBridgeAdapter.sol#L9

9: IPolygonZkEVMBridge public immutable bridge;

Description
0xzoobi: In the existing setup, the bridge gateway addresses for Arbitrum, Optimism, and Polygon have been set as
`immutable`. This means that once defined during the constructor call, they cannot be changed. Consider a

scenario in the future where a newer version is released, either to address issues in the old version or to introduce
new features, leading to the deprecation of the old version. In such a case, the current implementation lacks a
mechanism to update these gateway addresses.
As a consequence to this, if this happens, the contracts need to be redeployed.
One simple example to better explain this issue is 1inch

1. 1inch Router v4 Announcement in 2021 10 Nov - https://blog.1inch.io/the-1inch-router-v4-is-rolled-out/

2. 1inch Router v5 Announcement in 2022 15 Nov - https://blog.1inch.io/the-1inch-router-v5-is-released/

Recommendation
0xzoobi: Add a setter function for the gateway addresses in all the bridge gateway contracts.

Client Response
Fixed via parameterization
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/adapter/Ar
bitrumBridgeAdapter.sol#L110

https://blog.1inch.io/the-1inch-router-v4-is-rolled-out/
https://blog.1inch.io/the-1inch-router-v5-is-released/
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/adapter/ArbitrumBridgeAdapter.sol#L110
https://github.com/mitosis-org/evm/blob/9dedfb6b742b71af5460789ea8735695a454feb4/src/helpers/adapter/ArbitrumBridgeAdapter.sol#L110

Mitosis

40

MTS-17:No whitelist token in CCDM Host lead to user can

accidentally losing token

Category Severity Client Response Contributor

Logical Low Fixed 0xhuy0512

Code Reference
code/src/helpers/ccdm/CCDMClient.sol#L125-L148

125: function _handle(uint32, bytes32, bytes calldata rawMsg) internal {
126: MsgDeposit memory msg_ = Message.decodeDeposit(rawMsg);
127:
128: StorageV1 storage $ = _getStorageV1();
129:
130: VaultInfo storage info = $._vaults[$._vaultIdxByL1Asset[msg_.token]];
131:
132: ISudoVault vault = info.vault;
133:
134: if (address(vault) == address(0x0)) {
135: revert Error.InvalidDepositRequest("non-registered asset");
136: }
137:
138: try vault.manualDeposit(msg_.amount, msg_.receiver.toAddress()) returns (uint256 spent)
{
139: if (spent < msg_.amount) {
140: _processRefund(msg_.receiver, msg_.token, msg_.amount - spent);
141: }
142: _processSpent(msg_.receiver, msg_.token, spent);
143: emit DepositSuccess(msg_.receiver.toAddress(), info.l1Asset, info.l2Asset, spent);
144: } catch {
145: _processRefund(msg_.receiver, msg_.token, msg_.amount);
146: emit DepositFailure(msg_.receiver.toAddress(), info.l1Asset, info.l2Asset, msg_.amo
unt);
147: }
148: }

code/src/helpers/ccdm/CCDMHost.sol#L75-L106

Mitosis

41

75: function deposit(uint32 domain, address token, address receiver, uint256 amount) external payabl
e {
76: StorageV1 storage $ = _getStorageV1();
77:
78: bytes memory enc = Message.encodeDeposit(MsgDeposit(receiver.toBytes32(), token.toBytes3
2(), amount));
79:
80: uint256 hplFee = _quoteDispatch(domain, enc);
81: uint256 userFee = _calcFee($._fee.gas, $._fee.adjustment);
82: if (hplFee + userFee < msg.value) {
83: revert Error.InsufficientFee();
84: }
85:
86: uint256 refund = msg.value - hplFee - userFee;
87:
88: if (userFee > 0) {
89: (bool ok, bytes memory ret) = payable($._fee.receiver).call{value: userFee}("");
90: if (!ok) {
91: revert Error.EthTransferFailed(userFee, ret);
92: }
93: }
94:
95: _dispatch(domain, hplFee, enc);
96:
97: if (refund > 0) {
98: (bool ok, bytes memory ret) = payable(_msgSender()).call{value: refund}("");
99: if (!ok) {
100: revert Error.EthTransferFailed(refund, ret);
101: }
102: }
103:
104: SafeERC20.safeTransferFrom(IERC20(token), _msgSender(), address(this), amount);
105: }

Description
0xhuy0512: CCDMHost's `deposit()` doesn't check if the deposited token is supported or not:

Mitosis

42

 function deposit(uint32 domain, address token, address receiver, uint256 amount) external paya
ble {
 StorageV1 storage $ = _getStorageV1();

 <<<<@@@ NOT CHECK `TOKEN`

 bytes memory enc = Message.encodeDeposit(MsgDeposit(receiver.toBytes32(), token.toBytes32
(), amount));

 uint256 hplFee = _quoteDispatch(domain, enc);
 uint256 userFee = _calcFee($._fee.gas, $._fee.adjustment);
 if (hplFee + userFee < msg.value) {
 revert Error.InsufficientFee();
 }

 uint256 refund = msg.value - hplFee - userFee;

 if (userFee > 0) {
 (bool ok, bytes memory ret) = payable($._fee.receiver).call{value: userFee}("");
 if (!ok) {
 revert Error.EthTransferFailed(userFee, ret);
 }
 }

 _dispatch(domain, hplFee, enc);

 if (refund > 0) {
 (bool ok, bytes memory ret) = payable(_msgSender()).call{value: refund}("");
 if (!ok) {
 revert Error.EthTransferFailed(refund, ret);
 }
 }

 SafeERC20.safeTransferFrom(IERC20(token), _msgSender(), address(this), amount);
 }

It will sent the crosschain message to L2 CCDMClient, which will reverted without any refund:

Mitosis

43

 function _handle(uint32, bytes32, bytes calldata rawMsg) internal {
 MsgDeposit memory msg_ = Message.decodeDeposit(rawMsg);

 StorageV1 storage $ = _getStorageV1();

 VaultInfo storage info = $._vaults[$._vaultIdxByL1Asset[msg_.token]];

 ISudoVault vault = info.vault;

 if (address(vault) == address(0x0)) {
 revert Error.InvalidDepositRequest("non-registered asset"); <<<<<<<<<<<REVERTED HERE
 }

 ...
 }

This issue will lead user can accidentally sent a wrong token and not get it back whatsoever

Recommendation
0xhuy0512: Add a check whether support this token or not using `_assetL1L2Map`:

Mitosis

44

 function deposit(uint32 domain, address token, address receiver, uint256 amount) external paya
ble {
 StorageV1 storage $ = _getStorageV1();

+ if ($._assetL1L2Map[domain][token] == address(0)) revert:

 bytes memory enc = Message.encodeDeposit(MsgDeposit(receiver.toBytes32(), token.toBytes32
(), amount));

 uint256 hplFee = _quoteDispatch(domain, enc);
 uint256 userFee = _calcFee($._fee.gas, $._fee.adjustment);
 if (hplFee + userFee < msg.value) {
 revert Error.InsufficientFee();
 }

 uint256 refund = msg.value - hplFee - userFee;

 if (userFee > 0) {
 (bool ok, bytes memory ret) = payable($._fee.receiver).call{value: userFee}("");
 if (!ok) {
 revert Error.EthTransferFailed(userFee, ret);
 }
 }

 _dispatch(domain, hplFee, enc);

 if (refund > 0) {
 (bool ok, bytes memory ret) = payable(_msgSender()).call{value: refund}("");
 if (!ok) {
 revert Error.EthTransferFailed(refund, ret);
 }
 }

 SafeERC20.safeTransferFrom(IERC20(token), _msgSender(), address(this), amount);
 }

Client Response
Fixed, https://github.com/mitosis-org/evm/blob/83a419a39c24f7cf81a671952c8bd33b00c186ec/src/helpers/ccd
m/CCDMHost.sol#L173-L175

https://github.com/mitosis-org/evm/blob/83a419a39c24f7cf81a671952c8bd33b00c186ec/src/helpers/ccdm/CCDMHost.sol#L173-L175
https://github.com/mitosis-org/evm/blob/83a419a39c24f7cf81a671952c8bd33b00c186ec/src/helpers/ccdm/CCDMHost.sol#L173-L175

Mitosis

45

MTS-18:Missing 0 amount check

Category Severity Client Response Contributor

Logical Low Fixed ravikiran_web3

Code Reference
code/src/helpers/ccdm/CCDMHost.sol#L75-L105

75: function deposit(uint32 domain, address token, address receiver, uint256 amount) external payabl
e {
76: StorageV1 storage $ = _getStorageV1();
77:
78: bytes memory enc = Message.encodeDeposit(MsgDeposit(receiver.toBytes32(), token.toBytes3
2(), amount));
79:
80: uint256 hplFee = _quoteDispatch(domain, enc);
81: uint256 userFee = _calcFee($._fee.gas, $._fee.adjustment);
82: if (hplFee + userFee < msg.value) {
83: revert Error.InsufficientFee();
84: }
85:
86: uint256 refund = msg.value - hplFee - userFee;
87:
88: if (userFee > 0) {
89: (bool ok, bytes memory ret) = payable($._fee.receiver).call{value: userFee}("");
90: if (!ok) {
91: revert Error.EthTransferFailed(userFee, ret);
92: }
93: }
94:
95: _dispatch(domain, hplFee, enc);
96:
97: if (refund > 0) {
98: (bool ok, bytes memory ret) = payable(_msgSender()).call{value: refund}("");
99: if (!ok) {
100: revert Error.EthTransferFailed(refund, ret);
101: }
102: }
103:
104: SafeERC20.safeTransferFrom(IERC20(token), _msgSender(), address(this), amount);
105: }

Description
ravikiran_web3: CCDMHost::deposit() function accepts the below four parameters. But there are not enough
validation to handle incorrect data.

1. domain,

2. token,

3. receiver,

4. amount

Of the above parameter, domain is indirectly validated while reading the gas price as below. But, other parameters
are not validated.

Mitosis

46

1. token: The token can be validated before initiating a dispatch using the storage map. If there is an L2 token
mapped for token, then it can be assumed valid.

2. receiver: The receiver can be 0 address. The problem with low level call function is that, for 0 address, it will
return bool as successful and hence cannot be caught by the check implemented. It would be better to validated
receiver address to be no zero.

3. amount: Caller can potentially pass 0 and complete this transaction with out issues and hence commits 0
tokens to the CCDM Host contract.

 SafeERC20.safeTransferFrom(IERC20(token), _msgSender(), address(this), amount);

Recommendation
ravikiran_web3: To address the potential for abuse or incorrect processing,
Token: Validate the token to have a corresponding L2 token before initiating a dispatch call. The l2Asset from the
below should be a valid address.

 address l2Asset = $._assetL1L2Map[origin][token];

receiver: validate for non zero address.
amount: Amount of the commitment for the caller to deposit tokens that are being relied to the destination chain.
This should be greater than 0.

Client Response
Fixed,We've fixed by adding nonZero modifier for every functions that have amount

Mitosis

47

MTS-19:Ensure no native asset value is sent in payable method

that can handle ERC20 transfers as well

Category Severity Client Response Contributor

Logical Low Fixed 0xzoobi

Code Reference
code/src/helpers/adapter/PolygonZkEvmBridgeAdapter.sol#L24

24: bridge.bridgeAsset(destNetwork, destAddr, amount, l1Asset, forceUpdateGlobalExitRoot, "");

Description
0xzoobi: The `bridgeAsset` method of `PolygonZkEVMBridge` is designated as payable, allowing it to interact with

both the native asset and ERC20 tokens. However, in the code path where it verifies that the token is an ERC20
token rather than the native asset, there is currently no validation ensuring that the user did not mistakenly include a
transaction value. Although the probability of this occurrence is relatively low, as it necessitates a user error, if it
does happen, the native asset value could become trapped within the PolygonZkEVMBridge contract.

Recommendation
0xzoobi: To address the issue and prevent the inadvertent transfer of native asset value when bridging ERC20
tokens, you can implement the following fix by incorporating the provided code:

 // Ensure no native asset value is sent
 require(msg.value == 0, "PolygonZkEVMBridge::bridgeAsset: Expected zero native asset value whe
n bridging ERC20 tokens");

Client Response
Fixed,bridgeAsset is no more payable.

Mitosis

48

MTS-20:Typo error

Category Severity Client Response Contributor

Code Style Informational Fixed ravikiran_web3

Code Reference
code/src/helpers/ccdm/CCDMClient.sol#L27

27: contract CCDMClientStrorageV1 {

Description
ravikiran_web3: 1. Minor typo while naming CCDMClientStrorageV1 contract
2. Minor typo while naming CCDMHostStrorageV1 contract

Recommendation
ravikiran_web3: 1. Correct as CCDMClientStorageV1 contract
2. Correct as CCDMHostStorageV1 contract

Client Response
Fixed,Renamed

Mitosis

49

MTS-21:Open TODOs

Category Severity Client Response Contributor

Code Style Informational Fixed Meliclit, ravikiran_web
3

Code Reference
code/src/entrypoint/Entrypoint.sol#L11-L13

code/src/entrypoint/Entrypoint.sol#L12

11: function _handle(uint32 origin, bytes32 sender, bytes calldata message) internal override {
12: /// TODO: implement me
13: }

12: /// TODO: implement me

Description
Meliclit: Code architecture, incentives, and error handling/reporting questions/issues should be resolved before
deployment
ravikiran_web3: The _handle() function is not implemented in Entrypoint contract. This contract is doing nothing
useful, but was listed for review.

function _handle(uint32 origin, bytes32 sender, bytes calldata message) internal override {
 /// TODO: implement me
 }

Recommendation
Meliclit: Remove todo
ravikiran_web3: Review with the team if this contract is needed. If yes, what is its intention as this contract is not
design for upgradability.
So, what is the need to include this contract in the project at this point.
It is not clear from the repo as to what purpose this contract is serving.

Client Response
Fixed
Fixed,removed

Mitosis

50

MTS-22:Gas Optimization

Category Severity Client Response Contributor

Gas Optimization Informational Fixed 0xhuy0512

Code Reference
code/src/vault/BasicVault.sol#L282

282: return;

code/src/vault/Cap.sol#L50-L52

50: $._epoch[localDomain] = 0;
51: $._load = 0;
52: $._ready = false;

Description
0xhuy0512: No need to return at the end of the function `_pruneDepositLog()` in BasicVault contract:

Mitosis

51

 function _pruneDepositLog(uint256 amount, address receiver) internal {
 UtilStorageV1 storage $ = _getUtilStorageV1();

 if ($._redeemPeriod <= 0) {
 return;
 }

 DepositInfo storage info = $._deposits[receiver];

 if (info.logs.length == 0) {
 info.resolved -= amount;
 return;
 }

 uint256 high = info.logs.length;
 uint256 low = info.lastLogIdx;

 while (low < high) {
 uint256 mid = Math.average(low, high);
 if (info.logs[mid].at + $._redeemPeriod > block.timestamp) {
 high = mid;
 } else {
 low = mid + 1;
 }
 }

 uint256 extracted = info.logs[high - 1].cumulative - info.logs[info.lastLogIdx].cumulativ
e;

 info.lastLogIdx = high - 1;
 info.resolved = (info.resolved + extracted) - amount;

 return; //<@@@@ no need
 }

0xhuy0512: The default value of uint256 is 0, default value of boolean is false. So there's no need to set it to default
value when init

 function initialize(address owner, address hook, address ism) public initializer {
 _MailboxClient_initialize(hook, ism, owner);

 StorageV1 storage $ = _getStorageV1();
 $._epoch[localDomain] = 0; //<@@@ no need
 $._load = 0; //<@@@ no need
 $._ready = false; //<@@@ no need
 }

Mitosis

52

Recommendation
0xhuy0512:

- return;

0xhuy0512: Delete those line to save some gas and better clarity

 function initialize(address owner, address hook, address ism) public initializer {
 _MailboxClient_initialize(hook, ism, owner);

 StorageV1 storage $ = _getStorageV1();
- $._epoch[localDomain] = 0;
- $._load = 0;
- $._ready = false;
 }

Client Response
Fixed via removing return statement as recommended
Fixed via removing redundant assignments as recommended, excluding assignment of DEFAULT_EPOCH (which is 1)
to $.epoch[localDomain]

Mitosis

53

MTS-23:ArbitrumBridgeAdapter::bridgeAsset() ignores the

seqNumber returned by underlying bridge on outbound transfer

Category Severity Client Response Contributor

Code Style Informational Fixed ravikiran_web3

Code Reference
code/src/helpers/adapter/ArbitrumBridgeAdapter.sol#L33-L35

33: function bridgeAsset(address destAddr, address l1Asset, address, uint256 amount) external {
34: bridge.outboundTransfer(l1Asset, destAddr, amount, maxGas, gasPriceBid, "");
35: }

Description
ravikiran_web3: The call on bridge to transfer assets to Arbitrum chain ignores the returned data. The reason could
be because only Arbitrum bridge api returns a value. For other chains, the apis does not return any value and hence
to keep it consistent across chains, the return type might be ignored.

 bridge.outboundTransfer(l1Asset, destAddr, amount, maxGas, gasPriceBid, "");

https://docs.arbitrum.io/devs-how-tos/bridge-tokens/how-to-bridge-tokens-custom-gateway

Recommendation
ravikiran_web3: At this point, there is no risk identified, but if the id was significant for tracking any errors in the
cross chain communication, it would be helpful to emit events.
These events will come handy incase of any issues and needs the return value as reference for tracking.
The recommendation is to capture the return value and emit an event.

Client Response
Fixed,https://github.com/mitosis-org/evm/blob/83a419a39c24f7cf81a671952c8bd33b00c186ec/src/helpers/adap
ter/ArbitrumBridgeAdapter.sol#L142-L147

https://docs.arbitrum.io/devs-how-tos/bridge-tokens/how-to-bridge-tokens-custom-gateway
https://github.com/mitosis-org/evm/blob/83a419a39c24f7cf81a671952c8bd33b00c186ec/src/helpers/adapter/ArbitrumBridgeAdapter.sol#L142-L147
https://github.com/mitosis-org/evm/blob/83a419a39c24f7cf81a671952c8bd33b00c186ec/src/helpers/adapter/ArbitrumBridgeAdapter.sol#L142-L147

Mitosis

54

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Invoices, or the scope of services, and terms and

conditions provided to you (“Customer” or the “Company”) in connection with the Invoice. This report provided in

connection with the services set forth in the Invoices shall be used by the Company only to the extent permitted

under the terms and conditions set forth in the Invoice. This report may not be transmitted, disclosed, referred to or

relied upon by any person for any purposes, nor may copies be delivered to any other person other than the

Company, without Secure3’s prior written consent in each instance.

This report is not an “endorsement” or “disapproval” of any particular project or team. This report is not an indication

of the economics or value of any “product” or “asset” created by any team or project that contracts Secure3 to

perform a security assessment. This report does not provide any warranty or guarantee of free of bug of codes

analyzed, nor do they provide any indication of the technologies, business model or legal compliancy.

This report should not be used in any way to make decisions around investment or involvement with any particular

project. Instead, it represents an extensive assessing process intending to help our customers increase the quality of

their code and high-level consistency of implementation and business model, while reducing the risk presented by

cryptographic tokens and blockchain technology.

Secure3’s position on the final decisions over blockchain technologies and corresponding associated transactions is

that each company and individual are responsible for their own due diligence and continuous security.

The assessment services provided by Secure3 is subject to dependencies and under continuing development. The

assessment reports could include false positives, false negatives, and other unpredictable results. The services may

access, and depend upon, multiple layers of third-parties.

